

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 48 (2007) 8060-8064

Combinatorial synthesis of 4-oxo-4*H*-imidazo[1,5-*a*]quinoxalines and 4-oxo-4*H*-pyrazolo[1,5-*a*]quinoxalines

Julia H. Spatz,^{a,b,*} Michael Umkehrer,^a Cédric Kalinski,^a Günther Ross,^a Christoph Burdack,^a Jürgen Kolb^a and Thorsten Bach^b

> ^aPriaton GmbH, Gmunder Str. 37-37a, D-81739 München, Germany ^bTechnical University Munich, Lichtenbergstr. 4, D-85747 Garching, Germany

Received 13 July 2007; revised 8 August 2007; accepted 4 September 2007 Available online 8 September 2007

Abstract—A combinatorial synthetic route yielding imidazo[1,5-*a*]quinoxalines and pyrazolo[1,5-*a*]quinoxalines is described. The use of 2-fluoroaniline and 1*H*-imidazole-4-carboxylic acid, respectively, 1*H*-pyrazole-3-carboxylic acid in the Ugi-reaction (U-4CR) followed by a nucleophilic aromatic substitution (S_NAr) affords the imidazo- as well as the pyrazolo-[1,5-*a*]quinoxaline moiety in good yield and high diversity.

© 2007 Elsevier Ltd. All rights reserved.

Imidazoquinoxalines belong to an important class of heterocycles that are often found in biologically active pharmacologically useful agents.¹ Synthetic and sequences that enable the preparation of polysubstituted heterocycles have attracted considerable attention in recent years.^{2,3} The combinatorial synthesis of 'drug-like' compounds permits the fast preparation of compound libraries suitable for lead discovery and optimization.^{4,5} Multi-component reactions (MCRs) are a powerful tool for the high-throughput screening strategy.^{6,7} One of the most important MCRs is the Ugi-reaction.8 In the Ugi four component reaction (U-4CR) an amine, an aldehyde, a carboxylic acid and an isocyanide react simultaneously to afford peptide-like structures in high diversity. This classical MCR followed by a post-condensation cyclization via nucleophilic aromatic substitution (S_NAr) leads to a new and versatile two-step

synthesis of imidazo- and pyrazolo[1,5-a]quinoxalines. The first step of the synthesis is U-4CR¹³ yielding products **5** (Scheme 1) as intermediates for the following cyclisation. The use of 2-fluoroaniline **1** and heterocyclic carboxylic acids **3** as bifunctional starting materials enables a subsequent nucleophilic aromatic substitution reaction in which the hydrogen-bearing nitrogen N1 of the heterocyclic carboxylic acid component acts as a nucleophile, and fluorine as a leaving group.^{9–14} We used two different carboxylic acids, 1*H*-imidazole-4-carboxylic acid and 1*H*-pyrazole-3-carboxylic acid leading to two different tricyclic title scaffolds **6**.

The Ugi-reaction is generally initiated by the condensation of amine 1 with aldehyde 2 leading to an intermediate imine, which subsequently reacts with carboxylic acid 3 and isocyanide 4 to afford the desired product

Scheme 1. Combinatorial synthesis of 4-oxo-4H-imidazo[1,5-a]quinoxalines and 4-oxo-4H-pyrazolo[1,5-a]quinoxalines via U-4CR/S_NAr strategy.

Keywords: Ugi-reaction; Multi-component reaction; Imidazo-quinoxaline; Pyrazolo-quinoxaline; Nucleophilic aromatic substitution.

^{*} Corresponding author. Tel.: +49 89 45213080; fax: +49 89452130822; e-mail: spatz@priaton.de

5. Here 2,2,2-trifluoroethanol (TFE) turned out to be the best solvent for the MCR step. After completion of the MCR the TFE was removed in vacuo. Since the MCR products (4a-h and 6a-h) were generally obtained in high yields and high purities (determined by HPLC-MS)¹⁵ they were used in the next step without further purification.¹⁶

The subsequent S_NAr cyclisation requires a suitable base to enhance the nucleophilicity of the heterocyclic nitrogen N1 by deprotonation and capture of the hydrogen fluoride released during the reaction. The optimization (test system: 1*H*-pyrazole-3-carboxylic acid, *p*-anisaldehyde and *t*-butylisocyanide) of the S_NAr conditions (solvents, bases, reaction time and temperatures) is shown in Table 1. Conversions (*Y*) were determined by HPLC-MS after 20 min of reaction time under microwave (mw) irradiation or alternatively in pressure tubes at 120 °C after 19 h. The results show that Cs_2CO_3 or K_2CO_3 as a base in combination with microwave irradiation at a reaction temperature of 150 °C in DMF is the ideal method. All compounds were purified by crystallization or by column chromatography on silica gel.¹⁷

Tables 2 and 3 show the results for the synthesized compounds **5a-h** and **7a-h** with specific yields for each

Table 1. S_NAr optimization

Base	Equiv	Solvent	reflux/mw	T (°C)	Y(%)
KOtBu	5	DMF	reflux 19 h	120	84
KOtBu	3	DMF	mw 40 min	150	0
K_2CO_3	5	DMF	mw 20 min	150	99
K_2CO_3	5	TFE	mw 40 min	100	0
Cs_2CO_3	1	DMF	reflux 40 h	105	40
Cs ₂ CO ₃	5	DMF	mw 20 min	150	98

Y: crude product determined by HPLC-MS.

Table 2. Synthesized imidazo-[1,5-a]quinoxalines

	R 1			0H + R	³ U-4CR N		R ₃ S _N Ar		_N_R ₃
		F 1	2		3 ^{rt}	4 R 1	K₂CO₃ DMF 150 ℃ mw	5 N	1
Entry	R_1	R ₂	R ₃	rt (h)	<i>Y</i> ₁ (%) LC/(isol.)	MCR-product	Microwave (min)	<i>Y</i> ₂ (%) LC/(isol.)	S _N Ar-product
1	Н	\bigtriangleup_{\star}	*	16	68 (61)	4a	20	99 (92)	5a
2	Н	\bigtriangleup_{\star}		16	71	4b	20	68 (61)	5b
3	Н	\bigtriangleup_{\star}	~_~··	16	48	4c	40	65 (55)	5c
4	Н	\bigtriangleup_{\star}	*	16	68	4d	20	59 (53)	5d
5	Н	Н		16	78	4e	20	86 (72)	5e
6	Н	Н	+*	16	50	4f	20	57 (47)	5f
7	Н		*	16	97	4g	20	74 (65)	5g
8	CF ₃	\bigtriangleup_{\star}	+*	16	65	4h	20	49 (37)	5h

 Y_1 : yield of MCR-product (equimolar: aniline, aldehyde, carboxylic acid and isocyanide, TFE, rt), crude product determined by HPLC-MS. Y_2 : yield of S_NAr-product (5 equiv K₂CO₃, 1 equiv MCR-product, DMF, 150 °C microwave) crude product determined by HPLC-MS (isolated). \sim

0 P

Table 3. Synthesized pyrazolo-[1,5-a]quinoxalines

R 1.

		$R_2 + R_2$	о н+ стон	+ R ₃	NC U-4CR	F O R 3	$\sim S_N Ar$ $\kappa_2 CO_3$ $\sim N - N$		H `R ₃
		1	2	3		6 R 1	DMF 150 °C mw	T R 1	
Entry	R ₁	R ₂	R ₃	rt (h)	<i>Y</i> ₁ (%) LC/(isol.)	MCR-product	Microwave (min)	Y ₂ (%) LC/(isol.)	S _N Ar-product
1	Н	\bigtriangleup_{\star}	*	16	80 (77)	6a	20	94 (89)	7a
2	Н	\bigtriangleup_{\star}		16	83	6b	20	77 (61)	7b
3	Н	\bigtriangleup_{\star}	*	16	77	6с	20	65 (51)	7c
4	Н	Н	~*	16	89	6d	20	65 (51)	7d
5	Н	Н	*	16	54	бе	20	40 (37)	7e
6	Н	~*	\downarrow^{\star}	16	90	6f	20	85 (79)	7f
7	3-CH ₃	~*	*	16	82	6g	40	61 (53)	7g
8	3-CF ₃	\bigtriangleup_{\star}	*	16	74	6h	40	77 (75)	7h

 Y_1 : yield of MCR-product (equimolar: aniline, aldehyde, carboxylic acid and isocyanide, TFE, rt), crude product determined by HPLC-MS. Y_2 : yield of S_NAr-product (5 equiv K₂CO₃, 1 equiv MCR-product, DMF, 150 °C microwave), crude product determined by HPLC-MS (isolated).

step ($Y_1 = MCR$, $Y_2 = S_NAr$). Aliphatic, phenylic and benzylic isocyanides as well as aliphatic and aromatic aldehydes could be involved in the reaction successfully.

The reaction times (rt) for the S_NAr are generally short and the conversions are good for all compounds. Chromatographic methods allow the isolation of products with high purity (>95%). The protocol is quite robust and tolerates a broad range of starting materials.

MCR products **4a** and **6a** were isolated and analyzed by NMR as exemplary compounds. The spectra were compared with those of their cyclized analogs **5a** and **7a**. As expected the S_NAr cyclization leads to significant changes, the most prominent ones being the absence of the heterocyclic NH signals as well as the H–F coupling (aniline part) and a considerable downfield shift of the heterocyclic CH as well as the α -CH (previous aldehyde CH) signals.

In summary, a novel two-step synthesis procedure for the preparation of highly substituted 4-oxo-4*H*-imidazo-[1,5-*a*]quinoxalines and 4-oxo-4*H*-pyrazolo[1,5-*a*]quinoxalines has been described. Amines and carbonyls can be varied broadly, leading to compounds with three potential points of diversity.

References and notes

- Chen, P.; Barrish, J. C.; Iwanowicz, E.; Lin, J.; Bednarz, M. S.; Chen, B. *Tetrahedron Lett.* 2001, 42, 4293.
- Hermkens, P. H. H.; Ottenheijm, H. C. J.; Rees, D. C. *Tetrahedron* 1997, 53, 5643.
- Gordon, E. M.; Gallop, M. A.; Patel, D. V. Acc. Chem. Res. 1996, 29, 144.
- Gallop, M. A.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gordon, E. M. J. Med. Chem. 1994, 37, 1233.
- Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385.
- 6. Dömling, A. Comb. Chem. High Throughput Screening 1998, 1, 1.
- 7. Dömling, A. Chem. Rev. 2006, 106, 17.
- 8. Ugi, I.; Meyer, R.; Fetzer, U.; Steinbrückner, C. Angew. Chem. 1959, 71, 386.
- 9. Wright, D. L.; Robotham, C. V.; Aboud, K. Tetrahedron Lett. 2002, 43, 943.
- Xiang, Z.; Luo, T.; Cui, J.; Shi, X.; Fathi, R.; Chen, J.; Yang, Z. Org. Lett. 2004, 18, 3155.

- 11. Pirrung, M. C.; Das Sarma, K. J. Am. Chem. Soc. 2004, 126, 444.
- 12. Gedey, S.; Van der Eycken, J.; Fulop, F. Org. Lett. 2002, 11, 1967.
- Kalinski, C.; Umkehrer, M.; Gonnard, S.; Jäger, N.; Ross, G.; Hiller, W. *Tetrahedron Lett.* 2006, 47, 2041.
- (a) Tempest, P.; Ma, V.; Kelly, M. G.; Jones, W.; Hulme, C. *Tetrahedron Lett.* **2001**, *42*, 4963; (b) Tempest, P.; Pettus, L.; Gore, V.; Hulme, C. *Tetrahedron Lett.* **2002**, *44*, 1947.
- HPLC-MS/MS spectra (Varian 1200), Polaris, RP C18 column, 3 mm × 150 mm, 5 μm, ProStar 320 (254 nm), 1 mL/min, 3 min gradient from 90% H₂O to 10% H₂O (0.1% HCOOH) versus CH₃CN, coupled with a Quadrupol MS/MS mass spectrometer using electrospray ionisation (ESI).
- 16. General procedure for the synthesis of MCR products 4a-h and 6a-h (GP-MCR): Fluoroaniline 1 (1 mmol) and aldehyde 2 (1 mmol) were stirred in 3 mL TFE for 2 h. Then, carboxylic acid (1 mmol) and isocyanide 3 (1 mmol) were added and the reaction mixture was stirred for 16 h at room temperature. The solvent was removed in vacuo. The MCR products were generally obtained in high yields and high purities (determined by HPLC-MS) and they were used in the next step without further purification.
- 17. General Procedure for the synthesis of 4-oxo-4H-imidazo[1,5-a]quinoxalines 5a-h and 4-oxo-4H-pyrazolo-[1,5a]quinoxalines 7a-h (GP-cyclisation): (1.0 mmol) of MCRproduct 4a-h, respectively, 6a-h was dissolved in 4 mL DMF (dry) and 5 mmol K₂CO₃ was added. The reaction was stirred at 150 °C for 20-40 min under microwave irradiation (microwave system: Discover, BenchMate, CEM). Then, 10 mL water was added and the mixture was extracted with 3 × 15 mL of ethyl acetate. The organic layer was dried over MgSO₄ and the resulting crude product was purified by flash chromatography or crystallization.

Compound **4a** was prepared according to GP-MCR and the resulting crude product was purified by chromatography on silica gel with eluent ethyl acetate/hexane = 2/1 (219 mg, 61%). $m/z = 359 [M+H]^+$, $m/z = 381 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 12.77 (bs, 1H), 7.97 (s, 1H), 7.61–7.19 (m, 6H), 4.08 (d, 1H, J = 10.4 Hz), 1.27 (s, 9H), 0.75 (s, 1H), 0.45–0.40 (m, 2H), 0.17 (m, 2H).

Compound **6a** was prepared according to GP-MCR and the resulting crude product was purified by flash chromatography on silica gel with eluent ethyl acetate/hexane = 2/1 (259 mg, 72%). m/z = 359 [M+H]⁺, m/z = 381 [M+Na]⁺. ¹H NMR (DMSO- d_6 , 250.13 MHz): 13.30 (bs, 1H), 7.94 (s, 1H), 7.58–7.19 (m, 6H), 4.13 (d, 1H, J = 10.1 Hz), 1.51 (s, 9H), 0.79–0.74 (m, 1H), 0.49–0.38 (m, 2H), 0.21–0.08 (m, 2H).

Compound **5a** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (314 mg, 92%). $m/z = 339 [M+H]^+$, $m/z = 361 [M+Na]^+$. ¹H NMR (DMSO-*d*₆, 250.13 MHz): 9.15 (s, 1H), 8.32 (d, 1H, J = 7.4 Hz), 7.95 (s, 1H), 7.47–7.19 (m, 3H), 7.19 (s, 1H), 5.11 (d, 1H, J = 9.5 Hz), 1.27 (s, 9H), 1.85–1.78 (m, 1H), 0.86–0.64 (m, 2H), 0.40–0.24 (m, 2H).

Compound **5b** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (239 mg, 61%). $m/z = 389 [M+H]^+$, $m/z = 411 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 9.52 (s, 1H), 9.19 (bs, 1H), 8.35 (d, 1H, J = 7.7 Hz), 7.99 (bs, 1H), 7.56–7.44 (m, 2H), 7.38 (d, 3H, J = 9.0 Hz), 6.88 (d, 2H, J = 9.0 Hz), 5.37 (d, 1H, J = 8.7 Hz), 3.73 (s, 3H), 1.91–1.88 (m, 1H), 0.90–0.73 (m, 2H), 0.39–0.26 (m, 2H).

Compound **5c** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (222 mg, 55%). $m/z = 403 [M+H]^+$; $m/z = 445 [M+Na]^+$. ¹H NMR (DMSO-*d*₆, 250.13 MHz): 9.12 (s, 1H), 8.44 (bs, 1H), 8.31–8.27 (m, 1H), 7.93 (s, 1 H), 7.36–7.34 (m, 3 H), 7.06 (d, 2H, 8.4 Hz), 6.79 (d, 2H, 8.5 Hz), 5.21 (m, 1H), 4.12 (d, 2H, *J* = 5.9 Hz), 3.710 (s, 3H), 1.90–1.70 (m, 1H), 0.84– 0.65 (m, 2H), 0.36–0.15 (m, 2H).

Compound **5d** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (157 mg, 53%). $m/z = 297 [M+H]^+$, $m/z = 319 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 9.16 (s, 1H), 8.33 (d, 1H, J = 7.7 Hz), 7.96–7.89 (m, 2H), 7.40 (m, 3H), 5.15 (bs, 1H), 2.61 (d, 3H, J = 4.4 Hz), 1.82–1.78 (m, 1H), 0.87– 0.66 (m, 2H), 0.39–0.16 (m, 2H).

Compound **5e** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (261 mg, 72%). $m/z = 363 [M+H]^+$, $m/z = 385 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 9.15 (s, 1H), 8.71 (t, 1H, J = 5.8 Hz), 8.31 (d, 1H, J = 6.6 Hz), 7.91 (s, 1H), 7.51– 7.30 (m, 3H), 7.18 (d, 2H, J = 8.7 Hz), 6.89 (d, 2H, J = 8.7 Hz), 4.93 (s, 2H), 4.25 (d, 2H, J = 5.7 Hz), 3.76 (s, 3H).

Compound **5f** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (145 mg, 47%). $m/z = 299 [M+H]^+$, $m/z = 321 [M+Na]^+$. ¹H NMR (DMSO-*d*₆, 250.13 MHz): 9.16 (s, 1H), 8.31 (d, 1H, J = 7 Hz), 8.00 (s, 1H), 7.96 (bs, 1H) 7.27–7.49 (m, 3H), 4.84 (s, 2H), 1.30 (s, 9H).

Compound **5g** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (260 mg, 65%). $m/z = 405 [M+H]^+$, $m/z = 427 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 9.16 (s, 1H,), 8.27 (d, 1H, J = 7.1 Hz), 8.01 (s, 1H), 7.75 (s, 1H), 7.35–7.24 (m, 5H), 6.92 (m, 3H), 3.75 (s, 3H), 1.28 (s, 9H).

Compound 5h was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (151 mg, 37%). $m/z = 407 [M+H]^+, m/z = 429 [M+Na]^+$. ¹H NMR (DMSO-d₆, 250.13 MHz): 9.21 (s, 1H), 8.51 (d, 1H, J = 8.4 Hz), 7.99 (s, 1H), 7.73 (d, 1H, J = 8.6 Hz), 7.68 (s, 1H), 7.32 (s, 1H), 5.18 (d, 1H, J = 9.5 Hz), 1.70–1.65 (m, 1H), 1.20 (s, 9H), 0.85–0.82 (m, 1H), 0.67–0.63 (m, 1H), 0.37–0.34 (m, 1H), 0.28–0.22 (m, 1H). ¹³C NMR (DMSO-d₆, 62.89 MHz): 168.32, 155.78, 134.79, 133.19, 129.76, 127.80 (d, ${}^{2}J(C,F) = 23.7 \text{ Hz}$), 125.13, 124.50 $(d, {}^{1}J(C, F) = 272.47 \text{ Hz}),$ 122.43. 120.95 (d. J(C,F) = 3.6 Hz, 118.57, 114.73 (d, ${}^{3}J(C,F) = 3.6 \text{ Hz}$), 99.99, 60.09, 51.88, 28.98, 12.18, 7.60, 3.19.

Compound **7a** was prepared according to GP-cyclisation and purified by chromatography on silica gel with eluent chloroform/ethyl acetate = 1/1 (303 mg, 89%). m/z = 339 $[M+H]^+$, m/z = 361 $[M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.32 (d, 1H, J = 7.4 Hz), 8.15 (s, 1H), 7.55–7.43 (m, 3H), 7.25 (s, 2H), 5.15 (d, 1H, J = 9.5 Hz) 1.87–1.83 (m, 1H), 1.27 (s, 9H), 0.86–0.68 (m, 2H), 0.37– 0.24 (m, 2H).

Compound **7b** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (246 mg, 61%). $m/z = 403 \text{ [M+H]}^+$, $m/z = 445.0 \text{ [M+Na]}^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.49 (s, 1H), 8.34–8.16 (m, 1H), 8.15 (s, 1H), 7.42–7.46 (m, 3H), 7.25 (d, 1H, J = 2.1 Hz), 7.10 (d, 2H, J = 8.4 Hz), 6.83 (d, 2H, J = 7.5 Hz), 5.29 (bs, 1H), 4.24 (d, 2H; J = 5.9 Hz), 3.74 (s, 3H), 1.87–1.86 (m, 1H), 0.89–0.72 (m, 2H), 0.41–0.19 (m, 2H).

Compound **7c** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (151 mg, 51%). $m/z = 297 [M+H]^+$, $m/z = 319 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.30 (d, 1H, J = 5.6 Hz), 8.12 (d, 1H, J = 2.0 Hz), 7.89–7.88 (m, 1H), 7.46–7.38 (m, 3H), 7.22 (d, 2H, J = 2.0 Hz), 5.16 (m, 1H), 2.59 (d, 3H, J = 4.4 Hz), 1.83–1.78 (m, 1H), 0.88–0.38 (m, 2H), 0.36–0.14 (m, 2H).

Compound **7d** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (190 mg, 51%). $m/z = 363 [M+H]^+$, $m/z = 385 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.70 (t, 1H, J = 4.4 Hz), 8.30 (d, 1H, J = 8.1 Hz), 8.15 (d, 1H, J = 2.1 Hz), 7.49–7.41 (m, 3H), 7.25 (d, 1H, J = 2.1 Hz), 7.18 (d, 2H, J = 8.7 Hz), 6.90 (d, 2H,J = 8.7 Hz), 5.00 (s, 2H), 4.26 (d, 2H, J = 5.7 Hz), 3.76 (s, 3H); ¹³C NMR (DMSO- d_6 , 62.89 MHz): 167.28, 159.15, 155.04, 142.64, 132.65, 131.88, 130.01, 129.36, 127.98, 125.34, 124.74, 116.93, 116.11, 114.57, 108.14, 55.98, 45.30, 42.55.

Compound **7e** was prepared according to GP-cyclisation and purified by crystallization from dietyhl ether (124 mg, 37%). $m/z = 333[M+H]^+$, $m/z = 355 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 10.34 (s, 1H), 8.29 (d, 1H, J = 9.0 Hz), 8.14 (d, 1H, J = 1.9 Hz), 7.57–7.39 (m, 5H), 7.24 (d, 1H, J = 2.0 Hz), 7.12 (d, 2H, J = 8.2 Hz), 5.15 (s, 2H), 2.25 (s, 3H).

Compound 7f was prepared according to GP-cyclisation and the resulting crude product was purified by flash chromatography on silica gel with eluent chloroform (320 mg, 79%). $m/z = 405 \text{ [M+H]}^+$, $m/z = 427 \text{ [M+Na]}^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.29 (d, 1H, J = 7.9 Hz), 8.16 (d, 1H, J = 2.1 Hz), 7.78 (s, 1H), 7.44–7.28 (m, 6H), 6.93 (d, 2H, J = 1.7 Hz), 6.90 (s, 1H), 3.75 (s, 3H), 1.29 (s, 9H).

Compound **7g** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (222 mg, 53%). $m/z = 419 [M+H]^+$, $m/z = 441 [M+Na]^+$. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.15 (d, 1H, J = 8.2 Hz), 8.10 (d, 1H, J = 2.0 Hz), 7.59 (s, 1H), 7.26–7.15 (m, 5H), 6.88 (d, 2H, J = 8.7 Hz), 6.80 (s, 1H), 3.72 (s, 3H), 2.24 (s, 3H), 1.23 (s, 9H).

Compound **7h** was prepared according to GP-cyclisation and purified by crystallization from diethyl ether (306 mg, 75%). m/z = 407 [M+H]⁺, m/z = 429 [M+Na]⁺. ¹H NMR (DMSO- d_6 , 250.13 MHz): 8.48 (d, 1H, J = 8.9 Hz), 8.24 (d, 1H, J = 1.7 Hz), 7.79 (s, 2H), 7.41 (s, 1H), 7.34 (d, 1H, J = 1.7 Hz), 5.25 (d, 1H, J = 9.5 Hz), 1.76–1.72 (m, 1H), 1.24 (s, 9H), 0.87–0.85 (m, 1H), 0.74–070 (m, 1H), 0.40–0.26 (m, 2H).